Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis

نویسندگان

  • Peter Jonsson
  • Victor Lagerkvist
  • Johannes Schmidt
  • Hannes Uppman
چکیده

Obtaining lower bounds for NP-hard problems has for a long time been an active area of research. Recent algebraic techniques introduced by Jonsson et al. (SODA 2013) show that the time complexity of the parameterized SAT(·) problem correlates to the lattice of strong partial clones. With this ordering they isolated a relation R such that SAT(R) can be solved at least as fast as any other NP-hard SAT(·) problem. In this paper we extend this method and show that such languages also exist for the max ones problem (MAX-ONES(Γ )) and the Boolean valued constraint satisfaction problem over finite-valued constraint languages (VCSP(∆)). With the help of these languages we relate MAX-ONES and VCSP to the exponential time hypothesis in several different ways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallelizing Assignment Problem with DNA Strands

Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...

متن کامل

A Simulated Annealing Algorithm for Unsplittable Capacitated Network Design

The Network Design Problem (NDP) is one of the important problems in combinatorial optimization. Among the network design problems, the Multicommodity Capacitated Network Design (MCND) problem has numerous applications in transportation, logistics, telecommunication, and production systems. The MCND problems with splittable flow variables are NP-hard, which means they require exponential time t...

متن کامل

An Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies

The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...

متن کامل

Approximation Solutions for Time-Varying Shortest Path Problem

Abstract. Time-varying network optimization problems have tradition-ally been solved by specialized algorithms. These algorithms have NP-complement time complexity. This paper considers the time-varying short-est path problem, in which can be optimally solved in O(T(m + n)) time,where T is a given integer. For this problem with arbitrary waiting times,we propose an approximation algorithm, whic...

متن کامل

A MULTI-OBJECTIVE OPTIMIZATION MODEL FOR PROJECT PORTFOLIO SELECTION CONSIDERING AGGREGATE COMPLEXITY: A CASE STUDY

Existing project selection models do not consider the complexity of projects as a selection criterion, while their complexity may prolong the project duration and even result in its failure. In addition, existing models cannot formulate the aggregate complexity of the selected projects. The aggregated complexity is not always equal to summation of complexity of projects because of possible syne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014